L'autonomie des véhicules électriques est devenue une donnée stratégique pour démontrer que les véhicules électriques sont capables de parcourir des longs trajets sans multiplier les arrêts pour recharger la batterie. Si les constructeurs annoncent des autonomies prometteuses, elles sont difficilement reproductibles dans la réalité.
L'autonomie et la consommation électrique communiquées dans les brochures commerciales et les publicités sont des mesures exigées par l'Union Européenne et nécessaires à l'homologation des véhicules. Elles répondent donc à un protocole bien défini, identique pour chaque véhicule électrique.

Autonomie
L'autonomie d'un véhicule électrique est calculée à partir du cycle WLTC abrégé et non du cycle WLTC standard utilisé pour calculer les émissions de CO2 des véhicules à moteur thermique. En effet, afin de ne pas répéter le cycle WLTC un nombre important de fois jusqu'à l'épuisement de la batterie (ce qui augmenterait significativement le coût d'homologation d'un véhicule électrique), le cycle WLTC abrégé comporte 2 phases à vitesse élevée et constante où la vitesse est au minimum de 100 km/h afin de vider la batterie plus rapidement.

Le cycle abrégé débute avec une première phase dynamique constituée du cycle WLTC standard suivi des deux premières portions du cycle WLTC (phase à vitesse lente et phase à vitesse moyenne) dénommée WLTC urbain. Ensuite, le véhicule entame le premier segment à vitesse constante avant d'entrer dans une deuxième phase dynamique identique à la première.
A l'issue de cette deuxième phase dynamique, le véhicule entame le dernier segment, à vitesse constante, jusqu'à l'épuisement complet de la batterie. La durée des segments à vitesse constante est déterminée en fonction de l'autonomie estimée de la batterie (le quatrième segment devant débuter approximativement avec un niveau de charge de la batterie de l'ordre de 10%).
L'autonomie d'un véhicule électrique est calculée à partir de la capacité utilisable de la batterie et de la consommation électrique moyenne mesurée pendant les 2 segments dynamiques.

La procédure abrégée, du fait qu'elle comporte une part plus importante de cycle urbain, a une vitesse moyenne moins élevée lorsqu'elle est comparée au cycle WLTC standard. La différence de vitesse moyenne s'élève à près de 15 % entre les 2 cycles.
Tout comme le cycle WLTC standard, le cycle WLTC abrégé reste une mesure théorique où la consommation des accessoires (climatisation, équipement multimédia, etc.) n'est pas prise en compte. D'autre part, les essais sont effectués à une température fixe de 23 °C, les effets conséquents à la conduite du véhicule dans des conditions de températures extrêmes (nécessité de refroidir ou de réchauffer la batterie, par exemple) ne sont pas pris en considération.

Consommation électrique
La consommation d'un véhicule électrique exprimée dans les brochures commerciales n'a pas de lien directe avec l'autonomie et la capacité utilisable de la batterie. En effet, la consommation électrique prend en compte l'énergie utilisée depuis le secteur pour recharger la batterie et non la capacité de la batterie.

Aussi, le calcul de la consommation électrique inclut non seulement la consommation électrique du moteur mais aussi les déperditions électriques du chargeur embarqué de la voiture lors de la recharge du véhicule.
Interprétation
Lors de la mise au point de la procédure du calcul d'autonomie, les autorités ont estimé que les véhicules électriques parcouraient plus de kilomètres en milieu urbain qu'un véhicule à moteur thermique.
Pourtant, si les conducteurs souhaitent disposer d'une autonomie importante, c'est essentiellement pour faire des longs trajets (départ en vacances par exemple) en empruntant des voies rapides et en évitant de multiplier les arrêts pour recharger la batterie.

De plus, l'autonomie annoncée est trop optimiste car le calcul se fait jusqu'à l'épuisement complet de la batterie. En réalité, il faut considérer une réserve d'environ 10% en cas d'imprévu (tout comme il existe une réserve de 5 litres environ de carburant dans le cas desvéhicules à moteur thermique). Cette réserve de 10% correspond à une autonomie d'environ 15 à 40 km selon le véhicule et la taille de la batterie.
Dans le cas d'un long trajet, c'est aussi une erreur de considérer que le conducteur rechargera son véhicule à plus de 80% car, au-delà de cette limite, la vitesse de charge ralentit significativement et le temps de charge s'allonge inexorablement.
Si passer d'un niveau de charge de 20% jusqu'à un niveau de charge de 80% nécessite de 30 à 40 minutes sur une borne de recharge rapide, la recharge entre un niveau de charge de 80% jusqu'à 100% nécessitera ensuite plus de 2 heures, soit près de 3 heures pour recharger complètement la batterie.

Cas pratique
Dans le cas de la Volkswagen ID.3, l'autonomie annoncée pour la version disposant d'une batterie de 58 kWh est de 425 km au maximum. La consommation électrique annoncée est comprise entre 15.4 kWh/100km et 16.9 kWh/100km (respectivement 154 Wh/km et 169 Wh/km).
En prenant en compte la batterie de 58 kWh et une autonomie de 425 km, la consommation électrique devrait s'établir à 136 Wh/km, une valeur 12 % inférieure à la consommation minimale indiqué par Volkswagen.

Cette différence s'explique par le fait que la valeur de 136 Wh/km correspond à la consommation du moteur électrique, tandis que la valeur de 154 Wh/km prend en compte le rendement du chargeur embarqué lors de la recharge. Cela signifie que, pour recharger la batterie complètement de 58 kWh (capacité utile du véhicule), le consommateur devra fournir l'équivalent de 65.5 kWh d'énergie (basée sur une consommation électrique minimale de 154 Wh/km pour une autonomie maximale de 425 km).
En réalité, selon les premiers essais réalisés par les médias dédiées aux véhicules électrique, la consommation électrique s'établit à 16 kWh/100km en moyenne : il s'agit d'une valeur moyenne relevée sur l'ordinateur de bord du véhicule. En tenant compte d'une marge d'erreur arbitraire de 5%, la consommation réelle du moteur est alors de l'ordre de 16.8 kWh/100km.

En considérant que le conducteur va utiliser la totalité de la batterie (jusqu'à la panne), l'autonomie réelle atteint 345 km, soit 80 km de moins que l'autonomie calculée pour l'homologation. En considérant, de plus, une réserve de 10%, l'autonomie est réduite à 310 km entre 2 recharges.
Dans le cas d'un long trajet où le conducteur n'aura aucun intérêt à charger la batterie au-delà de 80%, l'autonomie entre 2 charges rapides est alors de 240 km (soit l'équivalent d'un temps de conduite de plus de 2 heures sur voies rapides). C'est une valeur bien lointaine des 425 km d'autonomie initialement annoncés mais qui n'a, pour autant, rien de rédhibitoire pour envisager des longs trajets (ce qui fera l'objet d'un prochain article).

Partagez cet article sur :
11 décembre 2020 à 08h14
Comme d'habitude, les constructeurs trichent sur les chiffres, ou du moins, les font mentir ! Copie conforme des chiffres officiels des rejets de Co²...