Présentation moteur: Volkswagen 1.5l TSI

Présentation moteur: Volkswagen 1.5l TSI

Guillaume Darding - 14 février 2019

Avec la baisse significative des ventes de motorisations diesel, le 1.5l TSI (famille EA211 Evo) est appelé à jouer un rôle important pour le groupe automobile allemand grâce à sa cylindrée intermédiaire. Le 1.5l TSI est disponible selon deux niveaux de puissance: 130 chevaux et 150 chevaux. Bien que proches en matière de performance, les deux versions présentent une philosophie distincte et des différences techniques significatives.

Architecture

Le 1.5l TSI (famille EA211 Evo) est intimement dérivé du 1.4l TSI (famille EA211 s’articulant autour de moteurs de 1,0 litre à 1,4 litre de cylindrée). Il s’agit d’un moteur à 4 cylindres, turbocompressé et à injection directe. Cette famille de moteurs a été développée spécifiquement pour la plateforme MQB (plateforme à moteur transversal du groupe du groupe Volkswagen) utilisée par de nombreux modèles, du plus compact (Volkswagen Polo) au plus vaste (Skoda Kodiaq).

L’EA211 Evo s’articule autour d’un bloc en aluminium. Comme ce matériau supporte mal les frictions et la chaleur que cela engendre, une chemise en fonte grise est insérée dans chaque fût de cylindre. Dans le cas de la version 110 kW, ces chemises reçoivent un traitement additionnel par projection plasma (donnant un effet miroir) afin d’améliorer l’état de surface des cylindres pour réduire les frictions entre le cylindre et le piston. La culasse et les pistons sont, eux-aussi, en aluminium.

EA211 1.5 TSI Evo - Audi Q3

Le 1.5l TSI a conservé l’alésage du 1.4l TSI (74,5 mm). L’augmentation de la cylindrée est donc faite par l’allongement de la course: 80 mm pour le 1.4l TSI contre 85,9 mm pour le 1.5l TSI. Ainsi, le 1.5l TSI est encore plus typé longue course que son prédécesseur, une architecture qui favorise le couple à bas régime plutôt que les performances à haut régime.

Le taux de compression atteint 12.5:1 dans le cas de la version 96 kW (130 chevaux). Pour la version atteignant 150 chevaux, le taux de compression est abaissé à 10.5:1. Le 1.4l TSI atteignait un taux de compression de 10,0:1.

Performances

Dans sa version 130 chevaux (96 kW), le 1.5l TSI propose une puissance de 130 chevaux de 5.000 tr/min à 6.000 tr/min et un couple de 200 N.m entre 1.400 tr/min et 4.000 tr/min. Dans le cas de la version 150 chevaux (110 kW), la puissance atteint 150 chevaux de 5.000 tr/min à 6.000 tr/min et dispose d’un couple de 250 N.m entre 1.500 tr/min et 3.500 tr/min.

Diagramme puissance couple EA211 1.5 TSI Evo 130 et 150 chevaux

Cycle Miller

Le cycle Miller s'applique uniquement au 1.5l TSI 96 kW (130 chevaux). Le cycle Miller peut être réalisé selon deux variantes: soit en fermant tardivement les soupapes d'admission lors de la remontée du cylindre (phase de compression), soit en fermant prématurément les soupapes d'admission pendant la phase d'admission.

Dans les deux cas, la philosophie est la même: la phase de compression est plus courte que la phase de détente afin d'améliorer le rendement. Outre un rendement supérieur au classique cycle Beau de Rochas (permettant de réduire sensiblement la consommation d’essence), le cycle Miller a aussi pour avantage de réduire significativement la température des gaz d’échappement.

Pour ce qui concerne le 1.5l TSI, Volkswagen a pris le parti de fermer les soupapes d’admission de manière anticipée, avant que le piston n’ait atteint le point mort bas durant la phase d’admission. A cet effet, la levée des soupapes est moindre dans le cas de la version 96 kW (levée des soupapes de 7,2 mm contre 9,0 mm pour la version 110 kW), réduisant ainsi notamment la durée d’ouverture des soupapes.

Diagramme de Clapeyron (PV) cycle Miller / cycle Beau de Rochas

Grâce à cette technique, lorsque les soupapes d’admission se ferment, les gaz frais admis se détendent jusqu’à ce que le piston ait atteint le point mort bas. Cela permet d’abaisser la température des gaz dans le cylindre.

Les soupapes d’admission étant ouvertes sur une courte durée, il est nécessaire de prendre des mesures spécifiques de manière à optimiser le remplissage du cylindre en air frais. Notamment, il est important que le turbocompresseur soit réactif dès les plus bas régimes.

Skoda Superb conduite sur neige - EA211 1.5 TSI Evo

Enfin, ce mode de fonctionnement a une autre répercussion: pour admettre plus d’air dans un court laps de temps, il est nécessaire d’ouvrir plus largement le papillon d’accélérateur, ce qui permet de réduire les turbulences dans le conduit d’admission et d'améliorer, par conséquence le rendement.

Au contraire de la génération 3B de la famille de moteurs EA888 (1,8l et 2,0l TSI), le changement de mode entre le cycle Beau de Rochas et le cycle de Miller ne se fait pas en basculant sur un profil de came différent, mais plutôt en ajustant le calage (le moment où les soupapes s’ouvrent) des soupapes.

Turbocompresseur

Le 1.5l TSI de 96 kW est équipé d’un turbocompresseur à géométrie variable (TGV). Si ce type de turbo est couramment utilisé dans le cas des moteurs diesel, les TGV sont encore rares dans le cas des moteurs essence à cause de la forte température des gaz d’échappement.

Dans le cas de la version la moins puissante, Volkswagen a limité cette température grâce au fonctionnement selon le cycle Miller. De fait, la température maximale atteinte par le 1.5l TSI de 130 chevaux est inférieure à 900 °C contre près ou plus de 1.000 °C en règle générale pour un moteur essence.

Le turbo à géométrie variable permet d'obtenir une pression de suralimentation significative dès les plus bas régimes (à l'image d'un petit turbo à faible inertie) tout en optimisant le couple maximal à haut régime.

Le turbocompresseur de la version 110 kW est, quant à lui, plus classique: il s’agit d’un turbo à simple entrée et à géométrie fixe. La soupape de décharge est actionnée électriquement (principe repris du 1.4l TSI de précédente génération).

Distribution

L’EA211 Evo compte quatre soupapes par cylindre. L’entraînement des arbres à cames se fait à l’aide d’une courroie crantée. Le 1.5l TSI est équipé du calage variable en continu des soupapes à l’admission et à l’échappement.

Calage variable des soupapes - électrovanne déporté et cartouche centrale

Le déphasage est commandé à l’aide d’actionneurs hydrauliques. Côté admission, la vanne de régulation de pression d’huile est directement intégrée dans l’actionneur plutôt que déportée, ce qui permet une mise en action plus rapide du déphaseur.

Diagramme coût vitesse technologie déphaseur calage variable VVT

Le calage des arbres à cames se fait sur une amplitude d’environ 70° pour les soupapes d’admission contre 40° pour les soupapes d’échappement. Les soupapes sont actionnées à l’aide de linguets à rouleaux. Dans le cas de la version délivrant 150 chevaux, les soupapes d’échappement sont remplies de sodium.

Selon le régime et la charge moteur, le croisement des soupapes évolue grâce au calage variable afin de privilégier le rendement moteur ou la puissance.

Levée des soupapes - calage variable - EA211 1.5 TSI Evo

A faible régime, l’avance à l’ouverture des soupapes d’échappement (AOE) est maximale (les soupapes s’ouvrent le plus tôt possible), tout comme le retard à la fermeture des soupapes d’admission (RFA), le croisement des soupapes (moment où les soupapes d’admission et d’échappement sont ouvertes simultanément) est important.

A faible charge, cela permet d’augmenter la recirculation des gaz d’échappement dans le cylindre pour abaisser notamment les émissions d’oxyde d’azote. Lorsque la charge moteur devient élevée, la pression des gaz frais à l’admission est plus élevée que la contrepression des gaz d’échappement. Un croisement de soupapes élevé permet de garantir l’expulsion des gaz brûlés présents dans le cylindre pour maximiser le couple moteur.

Lorsque le moteur fonctionne à moyen et haut régime, le croisement des soupapes est réduit pour favoriser les performances du moteur: l’AOE est donc réduite, tout comme le RFA.

Lorsque la demande en couple est faible, le 1.5l TSI désactive automatiquement les cylindres 2 et 3. Cette désactivation est rendue possible grâce au déplacement latéral de l’arbre à came, ce qui permet de basculer les cylindres 2 et 3 vers des cames qui n’actionnent plus les soupapes.

La désactivation partielle des cylindres se produit entre 1.350 et 3.200 tr/min lorsque la demande de couple n’excède pas 75 N.m (version de 130 chevaux) ou 85 N.m (dans le cas de la version de 150 chevaux).

Echappement

Afin de traiter au mieux les émissions de gaz polluants, le collecteur d’échappement est intégré dans la culasse. Cette technique permet non seulement de réduire la distance entre la sortie moteur et les dispositifs de dépollution, mais aussi de mieux conserver la chaleur des gaz au sein de la ligne d’échappement car le collecteur bénéficie du système de refroidissement de la culasse.

Volkswagen Passat 2019 EA211 1.5 TSI Evo

Ces deux points permettent d’atteindre rapidement des températures élevées au niveau des systèmes de dépollution, un avantage certain pour ces derniers qui donnent leur pleine efficacité à haute température. A pleine charge, les gaz d’échappement sont refroidis dans le collecteur d’échappement.

Jusqu’au printemps 2018, la dépollution des gaz d’échappement était assurée à l’aide de deux catalyseurs 3 voies classiques: l’un monté juste après le turbo et le second un peu plus loin dans la ligne d’échappement, après le flexible de découplage.

EA211 1.5 TSI Evo - Dispositifs de dépollution - filtre à particules

Depuis l’été 2018 et afin de satisfaire aux normes Euro 6c et Euro 6d temp, le premier catalyseur 3 voies a été remplacé par un filtre à particules, ce dernier conservant de plus les fonctions d’un catalyseur 3 voies classique. Le second catalyseur est maintenu.

Injection

L’injection de carburant se fait directement dans les cylindres. Les injecteurs comptent 5 trous et la pression d’injection de carburant peut atteindre 350 bar. Selon les conditions de fonctionnement, jusqu’à 5 injections peuvent être réalisées par cycle moteur, ceci afin d’améliorer l’homogénéité du mélange air/carburant pour limiter le risque de cliquetis et diminuer les émissions de gaz polluants.

Seat Arona - EA211 1.5 TSI Evo

Multiplier les injections permet d’éviter d’injecter une grande quantité de carburant en une seule fois, ce qui conduirait une part significative de carburant à se retrouver sur les parois du cylindre (réduction, entre autres, des émissions de carburant imbrûlé).

Lors des démarrages à froid, une ou deux injections tardives ont lieu afin de retarder une partie de la combustion et ainsi de distribuer plus de chaleur au pot catalytique pour accélérer sa mise en température.

Gestion de la température

La pompe à eau est entraînée par l’arbre à cames des soupapes d’échappement à l'aide d'une courroie sans entretien. Elle est intégrée dans un boîtier central de gestion de la température, à l’image de la troisième génération des moteurs 1.8l / 2.0l TSI de la famille EA888.

Ce module de gestion de la température permet, d’une part, d’accélérer la mise en température du moteur et de gérer ensuite finement la température du liquide de refroidissement et du moteur.

Au démarrage, il n’y a pas de circulation du liquide de refroidissement, ce qui permet une mise en température rapide du bloc moteur. Une fois que la température du liquide de refroidissement dans le bloc moteur atteint environ 80 °C, une première vanne s’ouvre partiellement afin d’assurer une circulation minimale du liquide de refroidissement vers le radiateur. Une seconde vanne s’ouvre progressivement afin de refroidir la culasse, de fournir de la chaleur pour l’habitacle (si nécessaire) et de chauffer l’huile moteur.

Lorsque la température du liquide de refroidissement atteint 85 °C en moyenne, la seconde vanne reste ouverte, tandis que la première vanne va contrôler le débit de liquide de refroidissement passant à travers le radiateur en continu. A faible et moyenne charge, ce débit sera faible et le module laissera la température du liquide de refroidissement atteindre jusqu’à 105 °C. Lorsque le moteur est sollicité (forte charge), la première vanne s’ouvre complètement afin d’abaisser la température du liquide de refroidissement à 85 °C.

EA211 1.5 TSI Evo - Volkswagen Golf

Enfin, le moteur s’appuie sur un circuit de refroidissement secondaire indépendant, aidé par une pompe à eau électrique additionnelle, afin de refroidir l’air compressé par le turbo dans la partie admission et le turbocompresseur. Ainsi, la température du turbocompresseur reste maîtrisée même après la coupure du moteur.

Production

La production du 1.5l TSI Evo a débuté fin 2016. Il est actuellement produit majoritairement en Allemagne dans les usines moteurs de Salzgitter et Chemnitz. D’ici à 2020, l’EA211 Evo sera produit dans plus de 10 usines pour en faire un moteur mondial: en Allemagne (Salzgitter et Chemnitz), en Hongrie (site de Györ), en République Tchèque (site de Mladá Boleslav), en Chine (Changchun, Quingdao, Chengdu et Loutang), au Mexique (Silao), au Brésil (Sao Carlos) et en Russie (Kaluga).

Usines de production EA211 1.5 TSI Evo

Tableau comparatif EA 211 1.4 TSI / EA211 Evo 1.5 TSI

Crédits photos: Volkswagen / Audi / Skoda / Seat
Illustrations et tableau: Guillaume Darding

Les 10 derniers commentaires sur le sujet (voir les 51 commentaires):

jc

11 février 2020 à 10h16

bonjour guillaume
si je comprends votre reponse la modification ne serait liée qu'à la mise à niveau concernant la pollution et n'aurait rien à voir avec les problemes de broutage ?
jc
Jérome C

13 février 2020 à 12h47

Bonjour Guillaume,

Etant moi aussi ingénieur méca, j'avoue avoir infiniment plus confiance en un technicien indépendant comme vous plutôt qu'en n'importe quel vendeur de concession. Votre présent article sur le 1.5 TSI EVO est impressionnant.

Après un comparatif minutieux, je m'étais décidé à commander un Touran essence pour déplacer ma petite troupe. Vu la réputation calamiteuse de la DSG7 (DQ200), j'aurais pris une boîte manuelle. Mais pour le moteur, pas le choix, il n'y a que le 1.5 TSI EVO. Et en me renseignant sur la fiabilité de ce moteur somme toute récent, je découvre l'existence de ce souci de broutage à froid (aussi évoqué plus haut par "Guiz" et "Le dadou")... Pour info, cherchez "vw kangaroo" ou "1.5 tsi kangaroo" et vous tomberez sur un nombre incalculable de plaintes de propriétaires de VW, Skoda ou Seat neuves touchées par ce problème. Voir aussi ces liens par exemple :

- https://www.honestjohn.co.uk/news/owning-1/2019-01/volkswagen-acknowledges-problem-with-15-tsi-evo-engine/
- https://www.autoexpress.co.uk/car-news/107558/juddering-vw-group-cars-no-end-in-sight-for-owners
- https://car-recalls.eu/official-vw-skoda-and-seat-recall-for-some-bouncing-1-5-tsi-engines/

Le groupe VAG a mis près d'un an pour résoudre ce problème, de manière logicielle, après plusieurs patchs infructueux. Cela en dit long... et appelle de nombreuses questions pour qui voudrait acheter un modèle équipé de ce moteur. Entre autres :

1) Ce patch logiciel a probablement dégradé un autre élément du fonctionnement initial de l'auto... peut-être la consommation ? ou bien l'émission de polluants ? Savez-vous quelque chose là-dessus ?

2) On lit ça-et-là que le problème est totalement résolu en 2020 : s'agit-il uniquement de ce patch, ou bien (comme le demande "jc" juste avant moi) ont-ils fait évoluer le design du moteur ?

3) Question à 1M euros : on trouve de très nombreux T-Roc touchés, des Golfs, des Seat Arona ou des Skoda Karoq et Octavia par dizaines. Toutes partagent la même motorisation. Pourquoi alors ne trouve-t-on AUCUN signalement sur les Touran ? C'est rassurant et étrange à la fois...!

Merci encore pour votre expertise, et bonne journée.

Jérome
Guillaume Darding [administrateur]

13 février 2020 à 23h33

Bonjour Jérôme et jc,

1) à ma connaissance, ce problème est en relation avec une assistance à la conduite qui consiste à augmenter le régime moteur pour faciliter le démarrage du véhicule. Il s'agit d'une fonction de confort et la modification (voire l'inhibition) de cette fonction ne doit avoir aucune conséquence sur la consommation ou les émissions, ou vraiment à la marge.

2) L'évolution moteur DADA vers DCPA a été dictée par l'évolution des normes anti-pollution, ce qui a nécessité la modification de certains composants moteurs (des modifications mécaniques donc). Maintenant, il est certain que le constructeur en a profité pour appliquer les correctifs nécessaires (modifications logicielles) à la résolution de ce problème.

3) Sauf erreur de ma part, le Touran n'est disponible que depuis 2019 avec le 1.5 TSI evo, il est donc équipé, normalement, de l'évolution moteur DCPA. Et quand bien même, les volumes de vente du Touran sont moindres que les autres véhicules que vous évoquez, ce qui peut expliquer qu'il est plus difficile de trouver des critiques à son sujet !
Jérome C

14 février 2020 à 11h07

Merci beaucoup pour vos réponses détaillées.

J'ai eu un commercial VW hier aprèm au téléphone. J'ai (très) rapidement mis les pieds dans le plat en parlant des problèmes de la DSG7 et du 1.5L TSI EVO. Pour ce que ça vaut, il m'a répondu que les derniers problèmes "sérieux" de la boîte remontaient à 2014 et que ceux du moteur n'avaient touché que le T-Roc. Ce qui allait à peu près dans le sens de mes recherches, il faut bien l'avouer !
Guillaume Darding [administrateur]

14 février 2020 à 14h02

Bonjour Jérome, merci pour ces informations additionnelles. Je me permets juste de les pondérer car elles proviennent d'un représentant du constructeur (vous avez certainement déjà connu le phénomène lorsque, confronté à un souci, votre charmant concessionnaire vous affirme avec aplomb que vous êtes le seul dans ce cas, que c'est la première fois qu'il voit ça...).
jc

15 février 2020 à 16h21

merci pour vos reponses
Le dadou

16 février 2020 à 14h41

Bonjour Guillaume encore merci pour vos retours .
savez vous depuis quand les véhicules du groupe furent équipés du nouveau moteur DPCA ?
Est ce depuis le 1er janvier de cette annee suite au nouveau calcul du malus ?
J ai commandé un T-roc 1.5 DSG neuf qui est arrivé en concession j espere qu il ne m ont pas refourgué un ancien moteur !je me mefie de VW.
Vu la gestion de ce probleme avec les propriétaires touchés sout est possible .
Guillaume Darding [administrateur]

16 février 2020 à 23h01

Bonjour Le dadou,

le changement vers les moteurs DCPA doit dater du 2ème trimestre 2019 au plus tard afin d'être en phase avec la dernière évolution des normes Euro 6d temp applicable au 01 septembre 2019 - voir l'article ci-après pour plus de détails à ce sujet : https://www.guillaumedarding.fr/normes-euro-6-vue-d-ensemble-6475459.html
Jamie

27 mars 2020 à 16h05

Bonjour,

La réponse du vendeur de chez darty ,ah non vw , pardon, m'interpelle.
Je possède une golf 1.5 TSI 150 boîte manuelle de mai 2017 donc je pense code DADA ; c'est simple, je la prends le moins possible tellement elle est désagréable à conduire à cause de ce problème. Et si à froid c'est accentué, cela persiste également à chaud.
Je me demande même si je ne vais pas m'en séparer alors qu'elle a plein de qualités.
Charles

31 mars 2020 à 05h28

Bonjour Guillaume,
Je vous remercie de votre article très détaillé sur cette Volkswagen 1.5 TSI. Je trouve que le point le plus positif de cette voiture, c’est la réduction de la consommation d’essence. J’envisage d’acheter une auto et ce modèle me plaît bien. Ainsi, je pourrais faire de longs trajets autoroutiers sans trop dépenser de carburant.

Commentaire:

Nom d'utilisateur:

Adresse mail (non visible):

Site internet (optionnel):

Quelle est la forme géométrique du logo utilisé par Renault?

Réseaux sociaux
Commentaires
Guillaume Darding à propos de l'article «Présentation moteur : Tesla Model 3»

Hier

Bonjour pjmdur, à ma connaissance, la démagnétisation reste marginale dans le temps. En revanche, si les aimants sont soumis à des températures trop élevées (ou très élevées pendant un long laps de temps) et que l'électronique de puissance du moteur ne l'empêche pas, alors l'aimant peut perdre assez significativement en performance de manière durable. Parlant d'un moteur électrique d'une voiture, les aimants permanents contenus dans le rotor sont normalement assez peu exposés : la limite d'utilisation se situe plus au niveau de la batterie des composants électroniques.

Guillaume Darding à propos de l'article «Présentation moteur: Renault 1.3l TCe / Mercedes A 200»

Hier

Bonjour pjmdur, ce n'est pas un frein pour le moteur dans le sens où l'air comprimé va fournir de l'énergie pour faire redescendre le piston (comme un ressort - certes, il y a bien un peu de pertes car l'air comprimé va avoir tendance à s'échauffer). D'autre part, les soupapes restant fermées, elles ne sont pas actionnées par l'arbre à cames et c'est donc un gain substantiel pour le rendement (il faut un effort certain pour ouvrir la soupape et contrer la force de son ressort). Enfin, garder les soupapes fermées permet d'éviter tout phénomène de recirculation, notamment des gaz d'échappement chauds en provenance des autres cylindres qui pourraient venir encrasser le cylindre sans injection.

pjmdur à propos de l'article «Présentation moteur : Tesla Model 3»

Hier

Bonjour Guillaume, J'ai juste une question: Qui dit aimants permanents dit aussi perte d'inductance avec le temps et l'utilisation, non? Mes cours sur ce type de moteur sont lointains... Qu'en est-il? Cldt

© Guillaume Darding

Mentions légales